
Lightweight proof by reflection using
a posteriori simulation of effectful computation

Guillaume Claret1, Lourdes del Carmen González Huesca1,
Yann Régis-Gianas1, and Beta Ziliani2

1 PPS, team πr2 (University Paris Diderot, CNRS, and INRIA)
{guillaume.claret,lgonzale,yann.regis-gianas}@pps.univ-paris-diderot.fr

2 Max Planck Institute for Software Systems (MPI-SWS)
beta@mpi-sws.org

Abstract. Proof-by-reflection is a well-established technique that em-
ploys decision procedures to reduce the size of proof-terms. Currently,
decision procedures can be written either in Type Theory—in a purely
functional way that also ensures termination— or in an effectful program-
ming language, where they are used as oracles for the certified checker.
The first option offers strong correctness guarantees, while the second
one permits more efficient implementations.
We propose a novel technique for proof-by-reflection that marries, in
Type Theory, an effectful language with (partial) proofs of correctness.
The key to our approach is to use simulable monads, where a monad
is simulable if, for all terminating reduction sequences in its equivalent
effectful computational model, there exists a witness from which the same
reduction may be simulated a posteriori by the monad. We encode several
examples using simulable monads and demonstrate the advantages of the
technique over previous approaches.

1 Introduction

In Type Theory, types may embed computation, thereby allowing for a proof
technique called proof by reflection. This technique reduces the time to typecheck
a proof by replacing potentially large proof-terms by small proof-terms, whose
verification consists of computing at the type level.

For instance, say that verifying a proof∆ of Pa is computationally expensive,
for P : AÑ Prop, with A a type, and a : A. Let B be a type such that there exists
an interpretation function I from B to A, and a decision procedure D : BÑ bool.
Furthermore, let us assume that D decides P, that is, there is a theorem

sound : @x : B,Dx “ trueÑ P pI xq

which states that for every element x of B, if the decision procedure returns true
for this element, then property P holds for the interpretation of x. With these
definitions at hand, then if we have some b : B such that I b “ a, we can replace
the original proof-term ∆ with

sound b prefl_equal trueq

where refl_equal has type @x : bool, x “ x. Typechecking that the proof-term
above has the expected type (Pa) effectively amounts to (i) executing the proce-
dure D on b, (ii) checking that its result is equal to true, (iii) and checking that
the interpretation of b is equal to a.3

Previous works [11,4] have exposed several advantages and weaknesses of
proof by reflection, especially in comparison with the traditional LCF proof
style [9]. In a nutshell, the former is considered more robust to change, while the
latter is easier to write. Indeed, proving by reflection has a price: the decision
procedure D must usually be written in a constrained programming language
with only total functions and no imperative features. Furthermore, soundness
proofs are often complex and thus difficult to construct [8]. These two problems,
the restricted language and the need for keeping the proof of soundness simple,
incite the proof developer to write inefficient decision procedures, which is re-
grettable since proof search is intrinsically a computationally expansive process.

There is a variation of proof by reflection that alleviates some of these prob-
lems, called certifying proof by reflection [3,10]. In this technique, the decision
procedure is written in a general purpose programming language, and used by
the proof assistant as an untrusted oracle. The decision procedure returns a cer-
tificate, which is mechanically verified by the proof assistant via a certificate
checker written in Type Theory. This checker and its proof of correctness are
usually kept simple, whereas the untrusted oracle can be as sophisticated as nec-
essary to implement the decision procedure efficiently. However, this technique
has its drawbacks. First, it is not as efficient as one may expect, as the certifi-
cate embedded in the resulting proof-term can be large and, in addition, there
is a cost of executing the oracle, plus verifying the certificate with the checker.
Second, the proof developer is forced to write the certificate checker and the
decision procedure (or adapt an existing one in order to produce the certificate).
Third, the implementation of an oracle usually gives only weak guarantees about
its applicability (a perfectly valid but useless oracle could fail on every input)
because proving completeness properties about a program written in a general
purpose programming language is notoriously hard.

In this paper, we propose a novel style of proof by reflection that allows
for writing an efficient decision procedure in Type Theory. Our idea is to use
an (untrusted) compiled version of a monadic decision procedure written in
Type Theory as an efficient oracle for itself. Like in the certifying style, the
decision procedure is developed within an effectful language and used as an
oracle by the theorem prover. However, unlike in the certifying style, the decision
procedure is written in Type Theory, in a language extended with monads as
commonly found in Haskell programs [16]. In this way, programmers have a full
set of effects at their hand (references, exceptions, non-termination), together
with dependent types to enforce (partial) correctness. This decision procedure
is then automatically compiled into an impure programming language with an
efficient computational model. This compiled code is executed, and a small piece

3Usually there is also a previous step where a b is constructed for the given a. This
step is called reification in the literature.

of information is collected to efficiently simulate this execution in Type Theory
using the initial monadic decision procedure.

To formalize this idea we define the concept of a posteriori simulation of ef-
fectful computations in Type Theory. Roughly speaking, it involves determining,
for a computation C encapsulated in the monadic type MA, the conditions for
which there exists a piece of information p such that the evaluation of C, using p,
can witness an inhabitant of type A.

We believe this technique to be more lightweight than existing approaches
because neither a full proof of correctness nor a certificate checker is required to
execute a decision procedure once it is written in our monad.

To sum things up, our contributions are (i) a technique to perform a poste-
riori simulations of effectful computations in Type Theory in order to promote
these computations as genuine proofs by reflection; (ii) an informal discussion
of different simulable effects; (iii) a plugin4 for the Coq proof assistant, which
enables the effectful computation as an interactive decision procedure of a Coq
function written in monadic style; (iv) several examples of proofs by reflection
in this new style, showing its simplicity and efficiency.

2 Simulation-based proof by reflection

In this section we give an informal presentation of the simulation-based style of
proof by reflection, in Coq. As a running example, we consider the problem of
determining if a conjunction of inequalities

Ź

iPI Ai ď Bi between ground terms
of type T logically implies A ď B by transitivity, for some A and B. A simple
decision procedure for this problem boils down to a depth-first traversal of the
graph induced by the hypotheses. In the following procedure implemented in
pseudo-code, infinite loops are avoided by marking all of the visited terms:

decide p
Ź

iPI Ai ď Bi ñ A ď Bq “
let rec traverse : TÑ bool “ λC
if C “ B then J
else if marked C then K
else
mark C;
choice D s.t. Dj,C ď D ” Aj ď Bj ^ traverse D

in traverse A

This procedure cannot be implemented in Coq as it is, for the simple reason
that it uses side effects (marks) and is not obviously terminating (of course, it
is, but the argument is not syntactical as Coq requires). As mentioned in the
introduction, we are going to implement procedures with side effects using a
monad MΣ T1, where Σ represents the type of the state and T1 the returning
type of the monad. This procedure is then used as an oracle for itself, as we are
going to see in the second part of this section.

4The plugin and the Coq developments of this paper are downloadable online
at http://cybele.gforge.inria.fr.

http://cybele.gforge.inria.fr

Here is our encoding of the decide procedure:

01 Program Definition decide (f : formula) : M Σ (interpret f) :“
02 let (a, b) :“ goal f in
03 letrec! traverse x [interpret_hypotheses f Ñ x ď b)] :“
04 if x =?= b then return (Ź eq_refl x)
05 else if! marked x then error "Not Found"
06 else do! mark x in
07 choice (f Ñ x ď b) (successors x (hypotheses f))
08 (λ (s : { y : T & interpret_hypotheses f Ñ x ď y }) ñ
09 let! Hyb :“ traverse (π1 s) in
10 return (Ź (λ (hs : interpret_hypotheses f) ñ le_trans x (π1 s) b))
11)
12 in Ź (traverse a).

At high level, the code looks like an ML implementation of the pseudo-algorithm,
annotated with dependent types. We are going to explain line by line why this
procedure is a faithful representation of the pseudo-code shown above, while
introducing the notations used in the rest of the paper.

We start by describing the type formula in line 1. It is a record containing a list
of pairs of elements pAi,Biq—the hypotheses—and a pair of elements pA,Bq—the
goal. When an element f of this type is interpreted using the function interpret,
it produces the type

Ź

iPI Ai ď Bi Ñ A ď B. This is the type returned by the
monad.

Line 2 is straightforward: it binds the pair of elements being compared in
the goal of f to variables a and b. In line 3, the keyword letrec! introduces a
(potentially nonterminating) recursive function. Behind this syntactic sugar is
hidden the application of a dependently-typed general fixpoint operator. The
returning type of the local fixpoint traverse is specified between brackets. It
returns a proof that the inequality x ď b holds under the hypotheses of formula f.
As we can see in line 12, the argument x is instantiated with the element a from
the goal, therefore effectively proving a ď b.

In line 4 the current element is compared with b, assuming that the type of
the elements, T, has decidable equality. If it is equal, then the reflexivity proof
is returned using the standard unit monadic combinator return [16]. We defer
the explanation of the operator Ź.

In line 5, an error is raised if the element x is already marked. We do not
show the implementations of functions mark and is_marked (used in next line),
but they are straightforward. In line 6 we mark the element, and in lines 7-11
we try to find a proof of x ď b by transitivity, by finding a c such that x ď c and
c ď b. For that, we make a list with all the successors of x, that is, all c such
that x ď c is in the list of hypotheses. Then, we call the function choice:
01 Fixpoint choice A {T} (cs : list T) (pred : T Ñ M Σ A) : M Σ A :“
02 match cs with
03 | nil ñ Error "Not found"
04 | c : : cs ñ try! pred c with _ ñ choice A cs pred
05 end.

The choice operator iterates over a list to find an element c that successfully
produces a result using the function pred. At each step of the iteration, the func-
tion makes use of the exception mechanism to catch failed attempts and recurse
on the tail of the list. Coming back to traverse, in line 9 we call the function
recursively using the standard monadic bind operator let!x “ e1 in e2 [16]. The
resulting proof Hyb of c ď b is then used to prove x ď b by transitivity.

Finally, notice that in line 1 we use the standard Coq keyword Program [15].
This keyword allows for writing a partial term, where the holes are exposed to
the user as proof obligations. In our case, the holes come from type coercions,
noted as Ź, and they are solved automatically by Coq.

The compiled decision procedure as an oracle. The type system of Coq will not
let us apply decide as it is on some formula f to prove the goal. The reason is
simple: an infinite loop would lead to breaking soundness of the prover. Instead,
in order for decide to be evaluated, it needs some extra information, which we
call prophecy. For instance, in our example this extra information is the number
of steps that leads to a successful result.

To get this information, we execute a compiled version Cpdecideq in OCaml,
which performs the effectful computation. A central property of the system is
that Cp¨q maps the effectful computations of the monad in Coq to effectful terms
in OCaml, in such a way that a relation of a posteriori simulation stands between
the compiled term Cptq and the initial monadic term t. Intuitively, if a compiled
term Cptq, with t of type MT,5 converges to a value v, then the same evaluation
can be simulated a posteriori in Coq, using some prophecy p. This prophecy
completes computation t in order to get a term convertible to return t1 for some
term t1 of type T. We instrument the compiled code Cptq to produce the prophecy
along its execution.

Coming back to our example, the following is the (slightly beautified) ex-
tracted OCaml code of the function decide:
01 let rec fix f x = incrnbstep (); f (fix f) x
02
03 let rec choice cs pred0 = match cs with
04 | Nil Ñ failwith "error"
05 | Cons (c, cs0) Ñ try pred0 c with _ Ñ choice cs0 pred0
06
07 let decide f =
08 let (a, b) = goal f in
09 let traverse = fix (fun traverse x Ñ
10 match O.eqdec x b with
11 | Left Ñ ()
12 | Right Ñ if marked x then failwith "error" else (
13 mark x;
14 choice (successors x (hypothesis f)) (fun s0 Ñ traverse (projT1 s0))
15))
16 in traverse a

5For presentation purposes we leave out the parameter Σ representing the type of
the state.

The compiled program has almost the same shape as the source term except
that every term in Prop has been erased and that the primitives of the monad
are replaced with combinators defined in OCaml. These combinators implement
an effect and also contribute in determining the prophecy. For instance, the fix
combinator not only implements a general fixpoint but also stores the number
of iterations that are performed by the oracle in a global variable.

Once applied to a specific formula, this compiled function may diverge or fail.
In the setting of interactive theorem proving, divergence is not an important issue
because the user stays in front of the screen waiting for an answer, and he or
she can always interrupt the oracle if it takes too much time to respond. In the
case of a successful execution of the oracle, a prophecy of type nat is extracted
from the final value of the mutable cell incremented by fix.

The final proof-term. The resulting proof-term corresponding to the application
of the procedure to some formula f is

unit_witness pdecide fq p prefl_equal trueq

where p has type Prophecy (in this case, a natural number), and for any type T,

unit_witness : @x : MT,ProphecyÑ is_unit x “ trueÑ T
is_unit : MTÑ bool

The execution time of checking that this term has type interpret f is split between
the execution time of typechecking the prophecy p and the weak head normal-
ization of the procedure, using p to guide the reduction. The overall execution
time of the proof-by-reflection results from executing the decision procedure in
OCaml plus typechecking the final proof-term, which as we just mentioned, es-
sentially consists of executing the decision procedure a second time in Coq.6 One
can wonder if it is not a waste of time to execute the decision procedure twice,
but, as it turns out, using the hints in p, the execution time of the simulation
can be tremendously reduced in comparison with the execution of the oracle.
This optimization is the subject of Section 5.2.

Putting all the pieces together, our plugin performs the following steps when
proving a goal with a monadic procedure proc: (1) Translates and compiles proc
into OCaml. (2) Executes the compiled code Cpprocq and obtains prophecy p.
(3) Builds proof term unit_witness proc p prefl_equal trueq. Notice that the proof
developer only has to develop the procedure.

3 A posteriori simulation of effects

In this section we formalize the principle of a posteriori simulation of effect-
ful computations. The interested reader is invited to read the proofs from the
companion technical report [6]. In order to promote a clear formalization we
will focus only on simply typed λ-calculus, but the results presented are easily

6We assume compilation time not to be significant.

extensible to full Type Theory and OCaml, for the pure and impure calculus,
respectively. More precisely, we define two languages: λ, a purely functional and
strongly normalizing programming language with monadic constructs, and λv,K,
a non-terminating functional programming language. The definition of λ is pa-
rameterized by a monadM, which is abstractly specified by a set of requirements.
Accordingly, λv,K offers impure operators that match the effectful primitives of
the monad M.

Conventions. We write ÝÑe for a sequence e1 e2 . . . en where n ě 0. If a function F
is defined over e then we abusively write F pÝÑe q for the pointwise extension of F
to a sequence of e. For the sake of conciseness, we often omit universal quantifiers
in types when they appear in outermost prenex position.

3.1 λ, a purely functional language
The language λ is the simply typed λ-calculus à la Curry with constants:

t, u ::“ x | λx.t | t t | c T ::“ TÑ T | CÝÑT
c ::“ unit | bind | ó | ∇ C ::“ M | P

Constants include the usual monadic combinators for effects in the spirit of [16]:
unit lifts a term of type T as a computation of type MT, and bind composes two
computations. Effectful primitives of the monad are kept abstract by regrouping
them in the syntactic category ∇. The types include functional types and type
constructor applications which are assumed well-formed. M and P are the type
constructors for monad and prophecy, respectively. We omit the typing rules but
they are standard.

The constant ó and the type constructor P are unusual. The role of ó is
to perform a posteriori simulation using a value p of type P produced by the
oracle. We read óp t as “the reduced computation of t using the prophecy p”.
We require the existence of a total order ď over values of type P and a minimal
element K for this order. A reduced computation is still a computation, so ó has
type PÑ MTÑ MT.

We are interested in reasoning on βδ-convertibility between terms (where the
δ-reduction is the unfolding of constant definitions). We write ‹t for óK unit t
and we say that a computation has converged if there exist a prophecy p and a
term t1 such that óp t is convertible to ‹t1.

Finally, the standard notion of monad is extended with a mechanism of sim-
ulation directed by a prophecy.
Definition 1 (Simulable monad). A type constructor M is a simulable monad
if it is equipped with unit , bind, ó and an associated type for prophecies P, such
that the requirements 1, 2, 3 and 4 are fulfilled.
Requirement 1 (Standard monadic laws)

bind punit tq f “ f t
bind t pλx.unit xq “ t
bind pbind t1 t2q t3 “ bind t1 pλx.bind pt2 xq t3q

Requirement 2 (Reduction)

@ t, p1, p2, óp1 unit t “óp2 unit t.
@ t, u, p1, p2, p1 ď p2 and óp1 t “ ‹u implies that óp2 t “ ‹u.
@ p, óp bind t1 t2 “óp bind póp t1q t2

3.2 λv,K, a call-by-value impure functional language

The impure functional and non-terminating language λv,K has the same syntax
as λ, except that now constants only consist of effectful operators. The language
is equipped with an instrumented big-step operational semantics for a weak call-
by-value reduction strategy. The executions are carried out under environments η
assigning closed values v to variables: η ::“ ¨ | η;x ÞÑ v, v ::“ cÝÑv | pλx.uq rηs.
Closed values comprise full applications of effectful constants to values and clo-
sures. The judgment in this instrumented semantics is η $ u ópÑp1 v, which
is intended to be read as “the execution of a term u under the environment η
converges to a value v and computes a prophecy p1 from an initial prophecy p”.
We keep abstract the rules for constants: they will be characterized by the re-
quirement 4.

R-Var
η $ x ópÑp ηpxq

R-Lam
η $ λx.u ópÑp pλx.uq rηs

R-App

η $ u1 ópÑp1 pλx.uq rη
1s

η $ u2 óp1Ñp2 v1 η1;x ÞÑ v1 $ u óp2Ñp1 v

η $ u1 u2 ópÑp1 v

The purpose of the instrumentation of the compiled code is to monotonically
refine the prophecy at each step of the computation:

Requirement 3 (Monotonicity of prophecy computation)

@ p, p1, η $ u ópÑp1 v implies p ď p1.

Compilation Now, we define the compilation function Cp¨q from λ to λv,K.

Cpxq “ x Cpunitq “ λx.x CpMTq “ CpTq
Cpλx.tq “ λx.Cptq Cpbindq “ λx, y.y x CpCÝÑT q “ C pCpÝÑT qq
Cpt1 t2q “ Cpt1q Cpt2q Cpópq “ undefined CpT1 Ñ T2q “ CpT1q Ñ CpT2q

The translation replaces the monadic constructs unit and bind with their re-
spective definitions in the identity monad, and converts each effectful primitive
of the monad to the corresponding impure construction of λv,K. The type for
prophecies is kept fully abstract to the programmer. As a consequence, only the
instrumented compiled code is allowed to generate prophecies. Therefore, the
compilation of óp is explicitly undefined because this operator cannot appear in
a well-typed user-written monadic term.

The compilation of an effectful monadic constant must extend the prophecy
in a sufficient way to make the simulation converge.

Requirement 4 (Adequate instrumented compilation) @p0, . . . , pn`1, p,

if
"

@i, η $ Cptiq ópiÑpi`1 vi

η $ Cpc pt0, . . . , tnqq óp0Ñp v
then Du,óp c pt0, . . . , tnq “ ‹u

3.3 Examples of simulable monads

The “trace” prophecy. Given a monad M with an underlying effectful compu-
tation model specified by a reduction relation, there is always a prophecy to
simulate a converging effectful reduction: the reduction chain itself. However,
such a naive implementation of prophecies is obviously inefficient.

Non-termination and partiality. The type natÑ optionT defines an adequate
monad to represent non-terminating computations of type T. A general fixpoint
operator is defined by induction over the input natural number. If the number
of iterations is sufficient then the computation produces a term Some t, oth-
erwise None. For this monad, the natural type for prophecies is nat and the
instrumentation only has to compute an over-approximation of the number of
iterations for all the fixpoints of the program. Therefore, a single global variable
is enough to represent the prophecy.

State. The type stateÑ Tˆ state defines an adequate monad to model stateful
computations. A state monad is naturally simulable without a need for prophe-
cies because the operations read and write are total. Yet, if the monad also
provides an operation ref to dynamically allocate mutable references, it is hard
to ensure statically that a given reference belongs to the state. In that case, the
state monad has to be composed with the partiality monad and inherit its type
for prophecies. Furthermore, the prophecy can also embed the initial state used
to evaluate the monadic term: this is an opportunity to import some precom-
puted results from the oracle (see Section 4).

Non-determinism. The type list T defines an adequate monad to model nondeter-
ministic computations, which is useful in proof search procedures. An important
operator of this monad is choice of type MTÑ pTÑ MT1q Ñ MT1, a partial
function that picks an arbitrary choice in all the possibilities. If the list is empty,
there is no such choice. But, if a computation had converged, there exist a list
of choices that leads to a result. An interesting prophecy is exactly this list of
choices (see Section 5.2).

3.4 A posteriori simulation

The main theorem states that, if the evaluation of Cptq converges for some com-
putation t, then there exists a prophecy p to simulate t back in λ.

Theorem 1 (A posteriori simulation). Let ¨ $ t : M T a computation which
compilation converges to a value, that is ¨ $ Cptq ópÑp1 v holds. Then there
exists a term t1 such that óp1 t “ ‹t

1.

4 Implementation

We provide a plugin for Coq to develop proofs using the method described in
this work. The plugin includes (i) a library with the definition of a simulable
monad to write effectful decision procedures; (ii) a tactic called coq waiting for a
monadic term t of type MT to try to solve a goal T. Behind the scene, the tactic
compiles the monadic term into an OCaml program, executes this program and
if its execution converged, uses the resulting prophecy to produce a proof-term
in Coq.

The formal notion of simulable monad served as a guideline for the imple-
mentation: we defined a compilation function from Coq to OCaml as well as
a simulable monad in Coq that respect the requirements drawn by our formal
study. However, to improve the usability and the efficiency of our tool, some
practical aspects of the implementation differ from the formal specification.

4.1 A simulable monad in Coq

Our monad combines7 a partiality monad, a non-termination monad, a state
monad and a printing monad. It is still possible to implement nondeterminism
in it, as we will see in the example from Section 5.2. The monad is parametrized
by a signature Σ to type the memory (see below). Its type definition is:

M Σ α “ State.t Σ Ñ pα` stringq ˆ State.t Σ

The monad takes a state and returns a new state plus a value of type α if
the computation is successful, or an error message in case of failure. The state is
implemented as a dependent record containing: (i) the number of steps allowed
in recursion, (ii) a list of messages (used for debugging by the printing monad),
and (iii) the memory.

The size of the memory has to be dynamic, but at the same time the memory
has to be statically typed. Our solution is to parametrize the memory by a
signature Σ, containing the exact list of types T1, T2, . . . , Tn that will be used.
Then, the memory is a list of n regions of types T1, . . . , Tn respectively. The
content of a region is unbounded. For instance each region may contain a list of
elements. A reference has type Ref.t Σ Ti, and its implementation is simply the
natural number i corresponding to the i-th type in the signature Σ. All in all,
here are the effectful operations offered by the monad:

ref : Ti Ñ M Σ pRef.t Σ Tiq

read : Ref.t Σ T Ñ M Σ T
write : Ref.t Σ T Ñ T Ñ M Σ pq

print : αÑ M Σ pq

error : stringÑ M Σ α
try_with : ppq Ñ M Σ αq Ñ

pstringÑ M Σ αq Ñ M Σ α
dependentfix : pF Ñ Fq Ñ F

with F “ @px : Aq.M Σ pB xq

7In this work, unlike in Haskell, we are not interested in a fine grain control of
effects so we provide only one monad with all the effectful operations we found useful.

Pre-computation The memory is partitioned into two parts: InputMem and
TmpMem. TmpMem is initially empty and corresponds to the memory in the
usual state monad. InputMem is initialized by the OCaml program and given
as the initial (read-only) memory to Coq as a prophecy. Roughly speaking, the
order on the prophecies is induced by the distance between the contents of this
initial memory and the information needed to compute the same result in Coq as
in OCaml i.e. the required number of fixpoint iterations and the values that were
pre-computed in OCaml. Inside the implementation of the monad, this forces us
to program differently for these two environments and, for this reason, we defined
a low-level internal operator, select, of type @α, ppq Ñ αq Ñ ppq Ñ αq Ñ α which
is defined in Coq as selectpf, gq “ fpq and compiled in OCaml as Cpgpqq. For
more information about select, we defer the reader to Section 5.2. To fulfill the
requirements to ensure that our monad is simulable, we make sure that the
OCaml version of each operator only refines the contents of the InputMem during
its effectful execution.

4.2 In OCaml

The compilation of a monadic term written in Coq to a program in OCaml
is implemented by customizing the existing extraction mechanism of Coq [13],
where the new monadic constructs are extracted as follows:

M Σ α ÞÑ α
unit ÞÑ fun xÑ x
bind ÞÑ fun x f Ñ f x
print ÞÑ fun xÑ print_endlinex

dependentfix ÞÑ let rec fix f “ fun xÑ
incr_nbstepspq; f pfix fq x

in fix f x

error ÞÑ fun xÑ failwith x
try_with ÞÑ fun f hÑ try f pq

with s ÞÑ h s
tmp_ref ÞÑ fun i v Ñ ref v
input_ref ÞÑ fun i v Ñ register_ref i v

read ÞÑ fun r Ñ !r
write ÞÑ fun r v Ñ r :“ v

Since we are using the built-in effectful mechanisms provided by OCaml,
the monad is converted into the identity monad and, thus, the bind and unit
combinators are defined accordingly.

The print and partiality monad are implemented with the standard print
function and exceptions. The fixpoint operator adds instrumentation to count
the number of iterations in a global variable. The memory operators are handled
by OCaml’s references. References are divided into tmp_ref and input_ref. The
first ones are just normal OCaml’s references, while the second ones are registered
in an array, using the function register_ref. Thus, we can collect the values of
all the input references at the end of the execution to pass them to Coq.

4.3 Communication from OCaml to Coq

Once the execution of the OCaml code is done, we generate the prophecy for Coq.
It contains two parts: the number of steps and the memory in InputMem. The first
part is easy to communicate back, as it is just a natural number. As for InputMem,
it is more tricky since we need to reify OCaml data into Coq terms. Notice that

this is not possible in general, for example for abstractions or for proof terms,
since the extraction to OCaml erases too much information from the source term.
Our solution is to provide an ad-hoc reification mechanism using binary trees:
for every type T in the input memory signature, the user needs to provide a
morphism between T and a binary tree.

5 Examples
We now show examples of Coq programs written using a simulable monad. The
first example describes how to write effectful programs, while the second example
illustrates how the performance of an algorithm is greatly improved by using
compilation to OCaml and cross-stage memoization.

5.1 Congruence-Closure
The congruence-closure problem is about proving equality of two first-order
terms, given a set of known equalities. It can be solved efficiently using the
union-find algorithm [2]. In [7], a reflexive version of the algorithm is presented,
which is purely functional and proven correct. A large part of the code is devoted
to prove termination and implementing functional arrays. We wrote this algo-
rithm in our system using the partiality monad to avoid proving termination.
We focus on the Find function:
01 Program Definition Find hash u : M Σ {u’ : Index.t | u ” u’} :“
02 dependentfix (λ i ñ {j : Index.t | i ” j}) (λ find i ñ
03 let! eq_proof :“ MHash.Read hash i in
04 let (i’, j, Hij) :“ eq_proof in
05 if i ” i’ then (* case i = i’: should always be the case *)
06 if i ” j then (* case i = j: we find it *) return (exist _ j Hij)
07 else (* case i <> j: we have to continue from j *)
08 let! r :“ find j in
09 let (k, Hjk) :“ r in
10 do! MHash.Write hash i (EqProof.Make (i :“ i) (j :“ k) _) in
11 return (exist _ k _)
12 else (* case i <> i’: unexpected *) error "Find : i “ i’")
13 u.

At high level this function retrieves the representative u1 of the equivalent
class of u, along with a proof of the equality among u and u1. It iterates over a
hash-table hash from expressions (Index.t in the code) to expressions, crawling
the hash table until an element points to itself. If that is the case, then we reach
the representative. The hash table also contains the proof of equality, which is
used transitively to compute the resulting equality proof.

Programming with effects in Coq. Proving termination of the algorithm is hard
since it requires to maintain the invariant that the table is not cyclic. Luckily,
we are exempt to do such proof, thanks to the dependentfix operator that
allows for non-termination. The hash-table is a mutable structure with a read
and a write operation. It is implemented as a mutable map from expressions to
expressions, with an additional proof of equality.

Dependently-typed programming with partial functions. We keep the power of
the Coq type system despite the fact that we are working in a monad. The Find
function has a dependent type specifying that the result is the representative
term u1, equal to the input term u. The proof term is generated in the monad,
so we can rely on run-time checks, which may fail, instead of proving invariants.
For example the invariant i “ i1 holds but does not have to be statically proven.
Instead it is checked dynamically (comparison of i and i1 on line 5). The result
is used to coerce a proof of i1 “ j to i “ j (done automatically by the Program
command in our example). If the check fails, we raise an exception handled
by the partiality monad. In this way we can partially specify our programs.
Notice that we are not forced to use partial programs, we can also use pure Coq
functions leading to stronger static guarantees. This flexibility is not available
in mainstream functional languages like OCaml.

5.2 A tactic for Lattices

James and Hinze [12] present a reflection-based tactic to solve lattice (in)equalities
based on the algorithm proposed by Whitman [17], which is known for being ex-
ponential in the worst case. In this work, the authors made the following remark:

“Possible future work is to turn our current implementation [...] into one that
uses dynamic programming to memoize the recursive calls. However, this is
not a trivial task. Coq’s programming language is purely functional [...], so
any data-structure that we use for memoization must be purely functional
and operations on that data-structure must all be proved terminating.”

In this section we provide a tactic similar to James and Hinze’s, but that uses
memoization. In our case, unlike in the recommendation made in the quoted text,
we use a form of cross-stage memoization to remember the successful path of
execution made by the OCaml version and to transmit it to the Coq version.
In this way, the exponential algorithm is executed only in OCaml, while Coq
just recreates the successful path made by the OCaml version mimicking what a
certificate checker would do. Unsurprisingly, the implementation presented here
greatly outperforms the one presented by James and Hinze. For details, we refer
to the original work cited above or to the accompanying code.

Whitman’s algorithm. The algorithm, as written by James and Hinze with some
simplifications and syntax sugaring follows.

01 Program Fixpoint leq (t u : Term) : {b : bool | b Ñ t ď u} :“
02 match (t,u) with
03 | (Var m, Var n) ñ m ” n
04 | (Join t1 t2, u) ñ leq t1 u ^ leq t2 u
05 | (t, Meet u1 u2) ñ leq t u1 ^ leq t u2
06 | (Var m, Join u1 u2) ñ leq t u1 _ leq t u2
07 | (Meet t1 t2, Var n) ñ leq t1 u _ leq t2 u
08 | (Meet t1 t2, Join u1 u2) ñ leq t1 u _ leq t2 u _ leq t u1 _ leq t u2
09 end.

What is important to notice is the _ branching in the last three cases. In
particular, the last case requires the algorithm to branch four times! This is the
culprit for the exponential time taken by the algorithm in some examples.

Remembering the past. To simulate only the interesting part of the proof search,
the simulation must choose the right side of every disjunction. This optimization
lies on the following function which advantageously replaces _:

01 Fixpoint tryBranches (ref : Ref.t Σ _) (n_branch : nat) (k : TermPairMap.key) B
02 (branches : list (unit Ñ M Σ B)) : M Σ B :“ select
03 (* Coq *) (λ _ ñ let! map :“ !ref in
04 let! n_branch :“ extract_some (TermPairMap.find k map) in
05 let! branch :“ extract_some (nth_error branches n_branch) in branch tt)
06 (* OCaml *) (λ _ ñ let! map :“ !ref in
07 match TermPairMap.find k map with
08 | Some n ñ let! branch :“ extract_some (nth_error branches n) in branch tt
09 | None ñ match branches with
10 | nil ñ error "No branch left to try"
11 | branch : : branches’ ñ try!
12 let! r :“ branch tt in
13 let! map :“ !ref in
14 do! ref :“! TermPairMap.add k n_branch map in
15 return r
16 with _ ñ tryBranches ref (S n_branch) k branches’
17 end
18 end).

This function uses the select operator to behave differently in OCaml than in
Coq. In OCaml, it tries to execute the code in all of the branches, and the returned
value comes from the first branch succeeding in its execution. In addition, the
position of the successful branch is added to the map referenced by ref. If no
branch succeed, then it raises an error. Before exploring the branches, it first
checks whether it is known which branch to take, and if this is the case, it
executes the code from that branch only. In Coq, it first reads the position from
the map, and executes only the code from the branch in this position. In both
cases, the key k used to store the position in the map is given as a parameter.
This key is instantiated with a pair containing the terms from both sides of the
inequality under consideration. The Whitman’s algorithm is changed to take
advantage of the branching function just described.

There is a couple of important remarks that must be made about this opti-
mization. First, the very powerful select operator can obviously break the the-
oretical requirements to achieve the a posteriori simulation. It is provided to
allow the user to create primitive operators not present in the monad. Second,
our implementation of the non determinism assumes that there is no side-effect
in the failing branches that may affect the successful ones.

Performance. As expected, we get a great performance gain, shown in Figures 1
and 2. These plots show the time it takes Coq to typecheck the result, for two
different classes of problems. The time to typecheck the result from the original
purely functional algorithm is shown in rounded dots, while for the effectful code
it is shown in squares. In Figure 1 we consider a problem with an increasing
number of variables, where there is no repetition in the formula (therefore every
combination should be taken into account). In Figure 2, we increment the number
of times a certain pattern occurs in an inequality, showing how our method
benefits from reusing previously computed paths. To sum things up, these plots
clearly shows the benefit of using prophecies to help the typechecker save some
computation.

6 8 10
0

50

100

Number of variables

T
im

e
(s

)

Fig. 1. Typechecking time for expo-
nential proof terms.

4 6
0

20

40

Number of repetitions

T
im

e
(s

)

Fig. 2. Typechecking time for terms
with a repetitive pattern.

6 Related work

Extending Coq with imperative features. Coq has been extended with imperative
features [1]. The methodology behind this extension is to offer to Coq’s user a
functional interface to data structures that are efficiently compiled internally.
This solution is transparent to the user: there is no need to write decision pro-
cedures in a monad to use imperative mechanisms. Yet, the trusted base, i.e.
the kernel of Coq, had to be extended. Actually, the two systems can be used
together: we could make use of the efficient data structures provided by this
extension to define some of the effectful operators of our monad improving the
performance of the a posteriori simulation done at Qed time.

Prophecies in Type Theory. Several works propose [5,14] methods to define and
to reason on general recursive functions in Type Theory. Bove and Capretta [5]
formally define a notion of prophecy, a coinductive predicate derived from a set
of non-overlaping recursive equations characterizing the co-domain of the partial
function defined by these equations. Our prophecies and Bove and Capretta’s
share the same role of prediction. However, our prophecies do not need to be co-
inductive because our monad uses them in direct style. Besides, our prophecies
are computed outside Coq by an efficient computational model i.e. OCaml.

7 Conclusion

In this paper, we presented a novel technique to write decision procedures in Coq.
We described its implementation as a plugin and we hope that it will simplify
the development of proofs by reflection in the future.

Acknowledgments We would like to thank the anonymous reviewers for their
thorough and helpful reviews.

References

1. M. Armand, B. Grégoire, A. Spiwack, and L. Théry. Extending Coq with Imper-
ative Features and its Application to SAT Verification. In ITP, 2010.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press,
1998.

3. J. O. Blech and B. Grégoire. Certifying compilers using higher-order theorem
provers as certificate checkers. FMSD, 2011.

4. S. Boutin. Using reflection to build efficient and certified decision procedures. In
TACS, 1997.

5. A. Bove and V. Capretta. Computation by prophecy. In TLCA, 2007.
6. G. Claret, L. González Huesca, Y. Régis-Gianas, and B. Ziliani. Lightweight proof

by reflection using a posteriori simulation of effectful computation. Technical
report, 2013. http://cybele.gforge.inria.fr/download/cybele_technical_
report.pdf.

7. P. Corbineau. Autour de la clôture de congruence avec coq. Master’s thesis, ENS,
2001. In French.

8. G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc proof
automation less ad hoc. ICFP, 2011.

9. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78 of
Lecture Notes in Computer Science. Springer, 1979.

10. B. Grégoire, L. Pottier, and L. Théry. Proof certificates for algebra and their
application to automatic geometry theorem proving. In ADG, 2008.

11. J. Harrison. Metatheory and reflection in theorem proving: A survey and critique.
Technical report, SRI Cambridge, 1995.

12. D. W. H. James and R. Hinze. A Reflection-based Proof Tactic for Lattices in
Coq. In TFP, 2009.

13. P. Letouzey. Coq Extraction, an Overview. In LTA, LNCS, 2008.
14. D. Pichardie and V. Rusu. Defining and Reasoning About General Recursive

Functions in Type Theory: a Practical Method. Research report, IRISA, 2005.
15. M. Sozeau. Subset coercions in coq. In TYPES, 2006.
16. P. Wadler. Comprehending monads. MSCS, 1992.
17. P. Whitman. Free Lattices. Harvard University, 1941.

http://cybele.gforge.inria.fr/download/cybele_technical_report.pdf
http://cybele.gforge.inria.fr/download/cybele_technical_report.pdf

	 Lightweight proof by reflection using a posteriori simulation of effectful computation

